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Abstract
This paper presents a review of largely our own work on the DNA melting transition, and some
new measurements of the elastic energy of sharp bends in single-stranded DNA and RNA. The
purpose is to present the point of view that studying the transition of intermediate size
oligomers leads to valuable tests of the models, in particular the ingredients most important for
a reduced-degrees-of-freedom description, such as the different role of base pairing and base
stacking. We make the case that, with intermediate size oligomers, one can actually measure the
bubble length, which exhibits a more interesting behavior than the fraction of dissociated bases
alone. Here is where more work seems necessary, both on the experimental and the modeling
side, to understand the differences between theory and experiments. We summarize our
previous results on the cooperativity parameters, which suggest that the transition is never
exactly two-state no matter how short the molecule, or in other words the nucleation size for
bubbles opening at the ends of the molecule is essentially 1 base pair. We briefly discuss our
own modification of the nearest-neighbor model which treats pairing and stacking separately, as
a way to fit the experimental melting profiles in this intermediate length regime. Finally we go
on to present some new measurements on the stability of DNA and RNA hairpins with very
short loops.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ordered helical structure of double-stranded (ds) DNA and
long polypeptide helices (such as poly-lysine) melts at ‘high’
temperature into a more disordered state. It was recognized
early on that, for long molecules, the transition would exhibit
coexistence of helical and non-helical segments in the same
molecule [1], so for a statistical mechanics description the
central problem becomes calculating the statistical weight of
a given non-helical segment with respect to the weight of the
helical segment (which in the following we take equal to 1, thus
counting energies and entropies with respect to the reference
ordered state). The statistical weights are fundamentally
different for the case of the polypeptide helix and ds DNA,
because the non-helical DNA segment is actually a loop
(except if it is located at one end of the molecule), and because
binding in the DNA is between nearest neighbors (both across
the two strands and along the same strand, corresponding to
base pairing and base stacking) whereas in the polypeptide
α-helix each aminoacid hydrogen bonds to the fourth-nearest
neighbor.

In the case of DNA, the statistical weight of an ss segment
(bubble) is built up from the energy of opening the bases and

the entropy of the loop. How these are evaluated depends on
the problem at hand. The approach favored by those interested
in the properties of the transition in the thermodynamic limit
of an infinite molecule is to take a simple form for the energy
(namely a fixed energy per open bp) and calculate the entropy
of the loop from fundamental polymer theory [2–4]; this is a
delicate and interesting problem (largely because of excluded-
volume effects) but it is now essentially understood. At the
other extreme, those interested in the melting profiles of short
oligomers take the approach of writing the free energy of
an ss segment as the sum of the free energies of individual
‘dimers’, two consecutive base pairs forming a dimer. This
is known as the nearest-neighbor (NN) model [5]; the reason
for considering dimers is that, experimentally, the free energy
of opening a bp also depends on the identity of the next bp; this
is due to the stacking interaction between neighboring bases on
the same strand. We may say that in this approach the energy
is modeled in detail but the entropy is simplified (scaling
linearly with the length of the loop). However, for sufficiently
short oligomers there are no loops and the NN model gives
an accurate description. Because of the directionality of the
DNA strands, there are ten different dimers; melting profiles
of short (<10 bp) oligomers can be analyzed in terms of a

0953-8984/09/034102+09$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/21/3/034102
http://stacks.iop.org/JPhysCM/21/034102


J. Phys.: Condens. Matter 21 (2009) 034102 R Gonzalez et al

two-states model to yield an energy and an entropy parameter,
so from the melting profiles of different sequences the free
energy parameters for all ten dimers have been measured [5].
The challenge is then whether the NN model thus constructed
can be extended to accurately describe the melting transition
of longer sequences. One approach is to introduce into the
bare NN model fixed free energy costs for opening a loop or
opening one end; this has the advantage of simplicity but it
does not cure the problem of the wrong scaling of the entropy
with loop length. However, it is also possible to incorporate the
PS loops with the correct entropy into the NN model [6–8]. So
do these models accurately describe the transition for medium
size and long molecules?

If one is only interested in the melting temperature (the
midpoint of the transition determined by a particular melting
profile, usually a UV absorption curve), then the online
servers based on the various incarnations of the NN model
above generally reproduce the data with a level of accuracy
comparable to the experiments. Note that the question is
the accuracy of the model using a fixed set of parameters,
usually optimized on the melting profiles of short oligomers, as
mentioned above. Because of the large number of parameters
(22 in the NN model), it is typically possible to reproduce any
given melting profile almost exactly with small adjustments of
the parameters.

However, if one is interested in an accurate description
of intermediate states (i.e. bubble states), then the model gen-
erally falls short of reproducing the experimental data [8–10].
Specifically, the fine structure of the melting profiles of kb long
molecules (conveniently displayed as a series of peaks in the
d f/dT versus T profile, where f is the UV absorption signal
reporting of the fractional length of the molecule in the ss state)
and the occurrence of bubble states in medium size oligomers
(20–60 bp), which we discuss below, as well as the influence
of mismatches on the bubble states, is not completely captured
by the models. Whether this is because the NN model param-
eters are, in fact, not yet fully optimized, or because additional
detail should be introduced in the model (such as, for instance,
the helical structure of the ground state), is not clear at the mo-
ment [8]. In the following, we summarize our experimental
work on oligomers of intermediate length, which provide strin-
gent tests for the models, and focus on the question of the most
relevant degrees of freedom for a coarse-grained description.
We present the view, borne from the experimental melting pro-
files of intermediate size oligomers, that it is advantageous to
keep base pairing and base stacking degrees of freedom sep-
arate (instead of combining them into effective free energies).
Then we go on to report some new experimental results on the
elastic energy of sharp bends in ss DNA and RNA.

The overriding theme of this issue of the journal being
the physico-chemical understanding of DNA which is relevant
for biology, understanding bubble states in long molecules
is important in genomics (see the article by Bishop and
Rasmussen in this issue), while intermediate length oligomers
and their bubble states are important in biotechnology
applications such as PCR primers (including mismatched
primers which are used for directed mutagenesis) and silencing
RNAs. Sharp bends in single strands of DNA and RNA relate

Figure 1. Melting profile for a 48 bp long DNA oligomer
(codenamed L48AS [11]); this same oligomer is represented in the
hairpin state in figure 3. The open circles are the UV absorption
curve f (T ), the filled circles represent the strand dissociation curve
p(T ) obtained with the quenching method. f (T ) is normalized such
that f = 1 for p = 1. The inset shows d f/dT .

to the question of tertiary structure formation, presently a lively
topic in biotechnology with the accelerating development of
new aptamers.

Note that we have not included the Peyrard–Bishop–
Dauxois model, which is very successful in describing many
aspects of the DNA melting profiles, in our discussion of the
models, because it is discussed in other papers in this issue.

2. Why study intermediate length oligomers?

Short oligomers (∼10 bp or less) melt through a transition
which is very close to two-state, so one cannot study bubbles.
Melting profiles of long (∼kb) DNA reveal the existence of
many bubble states (the d f/dT versus T curve shows many
peaks) but this fine structure is complicated: for instance,
it is difficult to assign a particular peak to the melting of
a specific segment. Intermediate length oligomers (∼20–
100 bp) display relatively simple melting profiles (the d f/dT
versus T curve has one or two peaks (figure 1)) but bubble
states are nonetheless prominent. This is actually not obvious,
because spectroscopic (say, UV absorption) melting profiles
f (T ) often are rather featureless sigmoidal curves (figure 2),
i.e. d f/dT has essentially one peak, which can equally well be
interpreted in terms of a two-state transition. The reason is that
spectroscopic methods such as UV absorption report on the
fraction of open bp without discriminating between partially
and totally dissociated strands. The midpoint ( f = 1/2) of the
normalized melting curve can then in principle correspond to
a state where half the molecules in the sample are completely
dissociated and half are completely closed, or a state where all
molecules are halfway open, or anything in between. Clearly
what is needed is an independent dissociation curve p(T )

which counts the fraction of completely dissociated molecules.
A method to measure p(T ) was introduced in [11, 12]

and is summarized below. To reiterate, there are three distinct
length regimes of interest: short oligomers, which melt in a
transition close to two-state, intermediate length oligomers, for
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Figure 2. Melting profiles for the sequence L42B18 (reproduced
from [9], copyright 2004 Elsevier), which consists of an AT-rich
middle region of length B = 18 bp (‘bubble forming region’)
clamped at the ends by GC-rich regions, for a total length of the
molecule L = 42 bp. The open circles represent the fraction of open
base pairs f (from the UV absorption measurements); the filled
circles represent the fraction of dissociated molecules p (from the
quenching method) and the squares represent the average length of
the bubble � (supposing there is only one bubble), which is
calculated from equation (1).

which the transition is not two-state but is still dependent on
oligomer concentration (i.e. there are finite size effects), and
long molecules where the transition is essentially independent
of concentration. The intermediate regime is interesting
because, first of all, one can measure two meaningful ‘melting
curves’ instead of one (namely, the fraction of dissociated
bases f (T ) and the fraction of dissociated molecules p(T ));
this enables more stringent tests of the models [13, 14] and
raises the possibility of further optimizing parameters of the
thermodynamic models obtained from short oligomers [8].
Second, in the case where only one bubble is present (which
can be achieved by playing with the sequence [12]) one can
measure the length of the bubble �(T ), because

p + (1 − p)� = f ⇒ �(T ) = f − p

1 − p
. (1)

So the main point in this intermediate regime is that,
whether doing experiments [12] or computations [14], one
has to deal with averages over two different ensembles: the
ensemble of all molecules and the sub-ensemble of the non-
dissociated molecules [14].

The dissociation curve p(T ) can be measured as
follows. One chooses sequences which are partially self-
complementary, so they can form both duplexes and hairpins.
One works in a regime of concentrations where the duplex is
more stable but the hairpin, once formed, is sufficiently long-
lived. The sample is initially annealed into the duplex state,
then brought to a temperature T within the transition region,
and finally quenched to ∼0 ◦C. Strands which were dissociated
at temperature T form hairpins after the quench, while partially
open molecules close again as duplexes (figure 3). Hairpins
and duplexes in the quenched sample are separated by gel
electrophoresis, the relative amount of hairpins reporting on

Figure 3. The principle of the quenching method to determine the
fraction of completely dissociated molecules p(T ). Partially
self-complementary sequences are annealed into the duplex state
(the ground state). The temperature is then raised to an intermediate
value within the transition region, followed by a quench to ∼0 ◦C.
Molecules which were completely dissociated before the quench
form hairpins immediately after the quench, while partially open
molecules close back as duplexes. Hairpins (hp) and duplexes (ds) in
the quenched sample are separated by gel electrophoresis and their
relative populations measured from the intensities of the
corresponding bands on the gel. The numbers on the lanes give the
temperature to which the sample was heated before the quench. The
relative population of hairpins and duplexes reports on the relative
populations of completely dissociated and partially opened
molecules at that temperature (see equation (2)). Also shown is the
hairpin structure for the sequence L48AS.

the fraction of dissociated strands at the temperature T before
the quench. Thus p(T ) is obtained from

p(T ) = hp

hp + ds
(2)

where hp is the amount of hairpins, ds the amount of duplexes
and T is the temperature before the quench. For a detailed
description of experimental corrections to (2) and controls, we
direct the reader to the published work [9, 12]. Combining the
dissociation curve p(T ) obtained with this quenching method
with the traditional melting curve f (T ) obtained from UV
absorption (which reports on the fraction of unpaired bases),
one obtains a picture of the melting transition for intermediate
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Figure 4. Schematic representation of the �–T curves for different
ratios B/L (these are not experimental data: the curves are a
schematic representation of the trend in the experimental melting
profiles of figure 2 in [9]); � is the length of the bubble, B the length
of the central ‘bubble forming region’ in the sequence and L the
length of the sequence. For increasing B/L , the plateau in the �(T )
curve, which occurs at � ≈ B/L , contracts in size (see [9]). The
numbers next to the curves represent the corresponding value of
B/L . The dotted line encompasses the region where there is
coexistence of bubble states and dissociated states.

length oligomers as in figure 2. The f (T ) profile alone is rather
featureless, but p(T ) < f (T ) in the transition region reveals
the existence of bubble states, and the �(T ) profile calculated
from (1) has the striking feature of a plateau. This sequence
is such (an AT-rich stretch of 18 bp clamped at both ends by
12 bp long GC-rich segments; the nomenclature L42B18 refers
to a molecule of length 42 bp with a ‘bubble forming’ central
region of length 18 bp) that a bubble opens ‘in the middle’; the
plateau in �(T ) is the signature of the coexistence of bubble
states and dissociated states in the sample.

We wish to briefly pursue the perhaps superficial analogy
with the isotherms in the P–V diagram for a liquid–gas
transition. We observe that in our case the width of the plateau
in �(T ) decreases for increasing length of the central AT-
rich region (for increasing B with the nomenclature above)
(figure 2 of [9]); this is seen in the experiments and must be the
case because the dissociation curve p(T ) becomes increasingly
steeper for increasing B; if p(T ) is infinitely steep, �(T ) =
f (T ) for 0 � f � 1 and there is no plateau. So we come to
a picture of the �–T curves for different B which qualitatively
looks like figure 4, where the dotted line denotes the boundary
of coexistence of bubble states and dissociated states. In
the figure, we indicate the existence of a critical point for
B/L → 1; this limit corresponds to a homogeneous sequence
(uniformly AT-rich). In this picture a homogeneous sequence
has, in the thermodynamic limit, a continuous transition,
characterized by the absence of coexistence between bubble
and dissociated states, or, which is the same, characterized by
a divergent bubble length. This is qualitatively in agreement
with the conclusions of [15].

However, the entire above paragraph is conjecture.
Coming back to comparing models and experiments, the PBD
model reproduces the melting profiles of intermediate length
oligomers very well [13] (note, however, that some of the

Figure 5. σav is the average of σ = f − p (equation (3)) over the
transition region, and is a measure of the statistical weight of bubble
states. σav is plotted versus the length of the sequence L for eight
sequences which form bubbles at the ends (reproduced from [9],
copyright 2004 Elsevier). Extrapolation of the data (the straight line
is a linear fit) suggests that the transition becomes strictly two-state
(σav = 0) only for L ≈ 1.

conclusions have been criticized in [14]), without retouching
the parameters; the NN model can probably also describe
these profiles accurately but it needs some further parameter
optimization (within the current uncertainty in parameter
values [8]). We now address in more detail certain points
which are raised by the melting profiles of intermediate length
oligomers.

3. The cooperativity parameters

The quantity
σ = f (T ) − p(T ) (3)

represents the fraction of bases which participate in a bubble
state. If we plot the average value of σ through the transition
region, σav, for different lengths L of the molecule, we obtain
the graph of figure 5 [9]. The longer of these sequences
(L = 24 and up) are designed to favor opening from one end
(that end is AT-rich). It is not possible to use the quenching
method for very short sequences (<10 bp), so we do not know
how this curve looks like for L < 10, but if we draw a
line through the data we get the suggestive result that the fit
extrapolates to the origin. That is, if we believe that σav goes to
zero linearly with L: σav ∝ (L−L0), then we find L0 ≈ 0 from
the experiments. This says that the cooperativity parameter or
extra free energy cost of opening the base pair at the end of the
molecule is essentially zero. Therefore the transition is never
exactly two-state, no matter how short the molecule.

We find this result plausible, because the end of the
molecule is already a ‘defect’, and known to be ‘fraying’,
so there is no compelling physical reason to expect a finite
nucleation size for bubbles opening at the ends of the molecule.
However, our measurements do of course not exclude that the
σav graph (figure 5) might turn sharply downwards for L < 10
and intersect the abscissa at a finite L.

On the other hand, if we look at bubbles opening
in the middle of the molecule (again using an opportune
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Figure 6. The same plot as figure 5 for the three sequences from [9]
which form a bubble in the middle. σav is plotted versus the length of
the bubble forming region B.

choice of sequences [9]) we find instead a finite nucleation
size (figure 6). In figure 6, we have displayed σav versus
B (the length of the bubble forming AT-rich region in the
sequence): the straight line intersects the abscissa at L0 ≈ 4;
however, if we plot instead σav versus L (the total length of the
molecule including the GC end-clamps) the plot gets shifted
to the right by 24 bp, i.e. now the line intersects the abscissa
at L0 ≈ 28. The true value of the nucleation size (which is
related to the cooperativity parameter for bubble opening in
the middle, which is certainly not zero) lies in between these
extremes, and could be obtained from such plots by generating
more data with varying length of the GC end-clamps.

4. Base pairing and base stacking as independent
degrees of freedom

The melting profiles of oligomers obtained by UV absorption
measurements do not display constant baselines before and
after the transition. Instead, the UV absorption signal f (T )

keeps rising after the critical temperature of strand dissociation
(figure 7). As is well known, this is due to unstacking in
the single strands: f (T ) contains contributions from both
unpairing and unstacking, i.e. in a linear approximation

f (T ) = α 〈unpaired〉 + β 〈unstacked〉 . (4)

So there are really two transitions: an unpairing and an
unstacking transition, and they are partially overlapping in
temperature. Furthermore, they are not independent because,
for instance, if two adjacent bases are unstacked at least
one of them must be unpaired also. Clearly for an accurate
description of the melting transition we must include pairing
and stacking as separate degrees of freedom, as they show
up individually in the measurements. This is not a small
effect (see figures 7, 4 and 5 in [10]): stacking energies are
comparable to pairing energies, and while the midpoint of
the unstacking transition is generally considerably above the
strand dissociation temperature, this is a very broad, non-
cooperative transition (see below) so it reaches down to lower
temperatures and overlaps with the unpairing transition. In
short, in a melting curve such as shown in figure 7 there is a

Figure 7. A1: normalized f (T ) profile (from UV absorption
measurements); A2: dissociation curves p (from the quenching
method) for the sequence L60 [17]. The experiments are the circles;
the solid lines are the model of section 4 [17].

measurable contribution of unstacking to the f (T ) curve even
in the region f < 1 (we are normalizing f (T ) curves such that
f = 1 corresponds to complete strand dissociation, i.e. f = 1
coincides with p = 1).

In the NN model pairing and stacking are lumped together
into the effective free energies of the dimers. In the PBD
model, stacking is instead introduced separately from pairing
in the nonlinear terms of the Hamiltonian. Whether this
Hamiltonian accurately describes the separate contributions of
unpairing and unstacking to the melting profile f (T ) is an
open question because the PBD model has not been used so
far in conjunction with (4) to explore the entire melting profile
f (T ) of oligomers including the region f > 1. However, it
is also possible to revisit the NN model and keep pairing and
stacking degrees of freedom separate. Before we discuss below
one realization of this approach, we draw attention to certain
experimental facts about the unstacking transition.

As mentioned above, the transition is broad and the
midpoint often lies about or above 100 ◦C; however, it turns
out that by lowering the pH this transition can be moved to
lower temperatures, which allows us to measure the whole
melting profile [16]. As shown in figure 8, unstacking is a
broad transition (compared to unpairing) and essentially non-
cooperative, in the sense that it is well described by a simple
Ising model of spins with nearest-neighbor coupling.

5
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Figure 8. Melting curves obtained from UV absorption for the ss
oligomers L13 (a) and PH21 (b). Circles are the experimental data;
solid lines are fits with the Ising model. The data were obtained at
pH = 3.6 in order to lower the midpoint of the unstacking transition.
L13 is almost self-complementary, but at this pH the ds structure is
not stable at room temperature; PH21 is non-self-complementary, so
there is no ds structure at any pH. The unstacking transition is much
broader in temperature compared to double helix melting, and is well
described by the Ising model.

In light of the above, we modified the NN model by
allowing unpaired bases to be either stacked or unstacked [17].
This approach has three advantages: (1) it includes both
transitions (unpairing and unstacking) and so can describe
the melting profiles in the entire range (including f > 1,
i.e. above the strand dissociation temperature); (2) it allows
us to introduce a local mechanism for cooperativity based on a
simple geometric constraint, thus avoiding introducing an extra
‘cooperativity parameter’ (free energy penalty for opening a
bubble) in the model (this aspect is similar in the PBD model);
(3) it accounts for the residual temperature dependence of the
dimer free energies of the original NN model.

There are, however, two main disadvantages. One is
that the thermodynamic parameters for stacking are less well
known than the combined pairing and stacking parameters
of the NN model, precisely because of the difficulty of
separating the two contributions. The second disadvantage is
the increased number of parameters: there are in principle 16
different stackings and 2 pairings (and no extra cooperativity
parameter in our formulation [17]), i.e. 18 parameters versus

Figure 9. Each NN dimer has two pairings (vertical lines) and two
stackings (horizontal lines). The broken bonds are crossed. The
horizontal lines represent the strands. There are 16 states of the
dimer; admissible states of the model of section 4 are the states from
1 to 11; the states from 12 to 16 are prohibited by the geometric
constraints.

10 different dimers plus 1 cooperativity parameter, i.e. a total
of 11 parameters, for the NN model.

Nonetheless, the model is useful for understanding in
simple terms the mechanism of cooperativity of bubble
opening and in general the interplay between pairing and
stacking. With the notation that Gp

i = Ep
i − T Sp

i is the
free energy of unpairing the i th base, Gst

i the free energy
of unstacking bases i and (i + 1) (of the same strand), Gst∗

i
the free energy of unstacking the corresponding bases of the
complementary strand, the free energy for complete unpairing
of the NN dimer is:

GNN
i = (Gp

i + Gp
i+1)/2 − T

{
ln[1 + exp(−Gst

i /T )]
+ ln[1 + exp(−Gst∗

i /T )]} (5)

which accounts for the temperature dependence of the
thermodynamic parameters (enthalpies and entropies) of the
NN model. The partition sum of the system can be written
using the NN dimers and in the transfer matrix formalism (as
far as pairing is concerned, since two successive dimers share
a pairing), but now there are internal states to these dimers
because of the stacking. There are in all 16 possible states
of the dimer (figure 9) and the cooperativity of bubble opening
arises naturally by excluding five of these states, the rule being
that you cannot break exactly one pairing in the dimer without
breaking at least one stacking, and if both pairings are intact
then both stackings are intact too. In terms of the statistical
weights

U p
i = exp{−Gp

i /T } etc (6)

the statistical weight of a given configuration of the NN dimer
is then built up using the remaining relevant diagrams in
figure 9, for example the statistical weight of the dimer with
both pairings open corresponds to diagrams 5, 9, 10 and 11
and is√

U p
i

√
U p

i+1

[
1 + U st

i

] [
1 + U st∗

i

] =
√

U p
i

√
U p

i+1

× [
1 + U st

i + U st∗
i + U st

i U st∗
i

]
(7)
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Figure 10. The elastic energy ε as a function of loop length,
extracted from the fits to the melting profiles according to
equations (8)–(14) in section 5. Squares represent the DNA data and
circles the RNA data.

where the sum in the last square bracket is the sum over the
internal states represented by the above diagrams. Figure 7
shows an example of using this model to fit the melting ( f )
and dissociation (p) curves of an oligomer of intermediate
length (60 bp). We used different thermodynamic parameters
for pairing for AT and GC, and, for simplicity, the same
thermodynamic parameters for all the stackings. At this level,
the main interest of the model is to account for the unstacking
contribution to the melting curve f , clearly visible in figure 7
where, beyond the temperature where p = 1 (all strands
dissociated), f (T ) keeps rising.

5. Sharp bends in DNA and RNA single strands

In the preceding paragraphs we pursued the point of view that
experiments on intermediate length oligomers are informative
because they provide stringent tests of the models in the form
of distinct melting and dissociation curves, and measurements
of bubble length. The contribution of unstacking, evident
in these experiments, is important particularly because the
interplay of pairing and stacking is responsible for the
cooperativity of bubble opening. Another way to look at the
cooperativity problem is to ask what is the free energy cost
of regions of large curvature (‘kinks’) of the DNA backbone.
This may also be interesting in the context of understanding
the different propensity of DNA and RNA to form functional
tertiary structures. In fact, we wanted to investigate this latter
point, and in the following we present some new experimental
results on the energy cost of kinks in ss DNA and RNA.

Our kinks are hairpin structures consisting of a stem and
a loop; the stem is a 7 bp fixed sequence, and we vary the
length n of the poly-T loop between 0 and 5 bases. The
measurement is the melting profile of the hairpin obtained by
UV absorption, and we are interested in extracting an ‘elastic’
energy associated with the loop. More precisely, we are
interested in investigating whether there are differences in this
elastic energy between DNA and RNA. All measurements are
performed under the same conditions, namely 100 mM PBS
buffer.

As the loop length n is increased from n = 0, we expect
the corresponding hairpins to first become more stable, as the

Figure 11. The DNA melting profiles for different loop lengths n
and the fits from which the elastic energies of figure 10 were
extracted. Squares: n = 0; circles: n = 1; diamonds: n = 2; inverted
triangles: n = 3; triangles: n = 4; stars: n = 5.

destabilizing elastic energy of the loop is reduced for longer
loops, and then become once again more unstable, because of
the growing difference in loop entropy between the ‘closed’
and ‘open’ states of the hairpin. To say the same in terms
of rates, a short loop (n ∼ 0–3) increases the opening rate
of the hairpin (and has little effect on the closing rate), while
a long loop (n > 3–4) decreases the closing rate (with little
effect on the opening rate). Indeed, the melting profiles of
hairpins show a non-monotonic shift in the midpoint of the
transition with increasing loop length n (figure 11). From these
melting curves, we want to extract an elastic energy associated
with the loop. We are mainly interested in differences between
DNA and RNA. Our strategy is then to fit the melting profiles
with a reasonably simple model; we want as few parameters as
possible and try to keep most of them the same for the DNA
and RNA fits, in order to explore possible differences in the
loop elastic energy between DNA and RNA.

We use a two-state model for the opening of the stem,
because it is so short. We introduce independent unstacking
degrees of freedom through an Ising model [16] because it
is necessary to fit the f (T ) curves in the entire temperature
range. We introduce an entropy of the loop with a specified
n dependence to account for the destabilizing effects of long
loops. Finally, we extract from the fits values of the ‘elastic
energy’ of the loop for different n. The model is defined by the
partition sum:

Z = 1 + e− U
T +σ

(
1 + e− E

T +S
)2(N−1)

. (8)

With the bracket equal to 1 this is a two-state model for
the melting of the stem, U is the energy cost of opening the
stem and σ the entropy gain. The bracket expresses the Ising
description of unstacking, where N is the number of bp in the
stem, E the unstacking energy per base and S the unstacking
entropy. We are going to fix these stacking parameters once
and for all (to the same values for DNA and RNA) and
concentrate on U and σ . With n the number of bases in the
loop, we write

U = U0 − ε(n) (9)

7
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Figure 12. The RNA melting profiles corresponding to the DNA
profiles of figure 11. Squares: n = 0; circles: n = 1; diamonds:
n = 2; triangles: n = 3; stars: n = 4; inverted triangles: n = 5.

where U0 is the same for all DNA curves, and a different
but again uniform value for the RNA curves. A different U0

for RNA and DNA is needed to account for the well-known
difference in stability between DNA and RNA duplexes. ε(n)

is the ‘elastic energy’ of the loop which we want to measure,
and we expect the properties ε(n) � 0 and ε(n) → 0 for n
large.

For the entropy σ we take the form

σ = σ0 + σ1 ln n (n � 1) (10)

where σ0 is the same for all DNA and RNA curves and
represents the entropy gained by opening the stem. The σ1

term represents the entropy gain of the loop when the stem
opens. The rationale is that the entropy difference between
an unconstrained strand of n bases and a strand of n bases
constrained to close in a loop is ∝ ln n (this is a good
approximation for large n, but we use it for small n also, which
is a weak point of this analysis). In summary, we fix once
and for all a form σ = σ(n) for the entropy, so that the only
fitting parameter to fit the melting profiles for different n is
ε(n). The objective is to detect differences in ε(n) between
DNA and RNA.

To complete the description we calculate from (8) the
expectation value for the stem to be open:

〈unpairing〉 = −T
∂

∂U
ln Z = {1 + exp(U/T − σ)

× [1 + exp(−E/T − S)]−2(N−1)}−1 (11)

(this is a number between 0 and 1, where 0 is the closed
state and 1 is the open state), and the expectation value for
unstackings:

〈unstackings〉 = −T
∂

∂ E
ln Z

= 〈unpairing〉 2(N − 1)

1 + exp{E/T − S} (12)

(this is a number between 0 and 2(N − 1)) and relate these to
the measured melting profile f (T ) through

f (T ) = c{Nβ 〈unpaired〉 + δ 〈unstacked〉 + γ } (13)

where c is the oligomer concentration, β , δ parameters
describing the change in UV absorption upon unpairing and
unstacking, respectively, and γ the absorption of the ground
state duplex. By normalizing the experimental profiles so that
f = 0 below the transition and f = 1 at the strand dissociation
temperature (beyond which f > 1 because of unstacking),
and performing all experiments at the same concentration of
oligomers, we can rewrite the above relation as

f (T ) = 〈unpaired〉 + α 〈unstacked〉 (14)

where the number of bp in the stem, N , which is the same for
all experiments, has been absorbed in the parameter α.

Using (11), (12) and (14) we fit the melting profiles
through the following procedure. Starting with DNA, we use
the curve for n = 5 (where the contribution from ε is small)
to fix E , S, U0 and σ(5) (see equations (8)–(10)), i.e. we
assume ε(5) ≈ 0. Then we use the n = 5, 4, 3 curves
(where ε is presumably still small) to find values for σ0 and
σ1. Now all parameters are fixed except ε(n), and we re-
fit all the curves with these fixed parameters and find ε(n).
Then we do small adjustments of, for example, σ1, etc, and
see whether ε(n) changes considerably or not, i.e. we test how
robust this determination of ε(n) is with respect to the choice
of parameters such as σ1, etc.

For RNA we keep the same values for E , S, σ0 and σ1,
find a new value of U0 and again determine ε(n).

The results for ε(n) are shown in figure 10, and the
melting curves and fits are displayed in figures 11 and 12.
The conclusion is that, from these data, we do not see
any significant difference in the behavior of the energy
of the loop between DNA and RNA. These measurements
could be improved, in particular by moving the transitions
towards lower temperatures (by reducing salt concentration,
for example), so as to see a bigger part of the transition
region, particularly for RNA. For now, this is a null result: no
significant difference between DNA and RNA.
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